3 resultados para Humans

em Digital Commons - Michigan Tech


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypertension is the most prevalent form of cardiovascular disease (CVD) in the world, and is known to increase the risk for developing other diseases. Recently, the American Heart Association introduced a new classification of blood pressure, prehypertension (PHT). The criteria for PHT include a systolic of 120-139 mmHg and/or a diastolic blood pressure of 80-89 mmHg. It has been observed that individuals with PHT have a higher risk of developing hypertension later in life. Therefore, it is important to understand the mechanisms contributing to PHT in order to possibly prevent hypertension. Omega-3 fatty acids found in fish oils have been suggested as a means of lowering blood pressure. However, little is known on the effects of fish oil in PHT humans. Therefore we conducted two studies. In Study 1 we investigated PHT and normotensive (NT) individuals during a mental stress task. Mental stress is known to contribute to the development of hypertension. In Study 2 PHT and NT subjects were placed in an eight week double-blind placebo controlled study in which subjects consumed 9g/day of either fish oil or placebo (olive oil) in addition to their regular diets. Subjects were tested during a resting baseline (seated and supine), 5 minutes of a mental stress task, and 5 minutes of recovery both pre and post supplementation. We measured arterial pressure (AP), heart rate (HR), muscle sympathetic nerve activity (MSNA), and forearm and calf vascular responses. In Study 1 PHT demonstrated augmented AP and blunted vasodilation during mental stress, but MSNA did not change. In Study 2, fish oil did not directly influence blood pressure, MSNA or vascular responses to mental stress. However, it became clear that fish oil had an effect on some but not all subjects (both PHT and NT). Specifically, subjects who experienced a reduced blood pressure response to fish oil also demonstrated a decrease in MSNA and HR during mental stress. Collectively, the investigations in this dissertation had several novel findings. First, PHT individuals demonstrate an augmented pressor and blunted vascular response to mental stress, a response that may be contributing to the development of hypertension. Second, fish oil does not consistently lower resting blood pressure, but the interindividual responses may be related to MSNA. Third, fish oil attenuated the heart rate and MSNA responses and to mental stress in both PHT and NT. In conclusion, we found that there are both similarities and differences in the way PHT and NT individuals respond to mental stress and fish oil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acute alcohol consumption has been reported to decrease mean arterial pressure (MAP) during orthostatic challenge, a response that may contribute to alcohol-mediated hypotension and eventually syncope. Muscle sympathetic nerve activity (MSNA) increases during orthostatic stress to help maintain MAP, yet the influence of alcohol on MSNA during orthostatic stress has not been determined. We hypothesized that alcohol ingestion would blunt arterial blood pressure and MSNA responses to progressive lower body negative pressure (LBNP). MAP, MSNA, and heart rate (HR) were recorded during progressive LBNP (-5, -10, -15, -20, -30, and -40 mmHg; 3 min/stage) in 30 subjects(age 24 ± 1 yrs). After an initial progressive LBNP protocol (pre-treatment), subjects were randomly assigned to consume alcohol (0.8g ethanol/kg body mass; n=15) or placebo (n=15) and then repeated the progressive LBNP protocol (post-treatment). Alcohol increased (drug × treatment, P ≤ 0.05) resting HR (59 ± 2 to 65 ± 2 beats/min) and MSNA (13 ± 3 to 19 ± 4 bursts/min) when compared to placebo. While alcohol increased MAP (83 ± 2 to 87 ± 2 mmHg), these increases were also observed with placebo (82 ± 2 to 88 ± 1 mmHg; treatment, P < 0.05; drug × treatment, P > 0.05). During progressive LBNP, a prominent decrease in MAP was observed after alcohol (drug × time × treatment, P < 0.05), but not placebo. There was also a significant attenuated response in forearm vascular resistance (FVR) during progressive LBNP (drug × time × treatment, P < 0.05). MSNA and HR increased during all LBNP protocols, but there were no differences between treatments or groups (drugs). In summary, acute alcohol ingestion induces an attenuation in blood pressure response during an orthostatic challenge, possibly due to the effect that alcohol has on impairing peripheral blood vessel constriction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent epidemiological studies report a consistent association between short sleep and incidence of hypertension, as well as short sleep and cardiovascular disease-related mortality. While the association between short sleep and hypertension appears to be stronger in women than men, the mechanisms underlying the relations between sleep deprivation, stress, risks of cardiovascular diseases, and sex remain unclear. We conducted two studies to investigate the underlying neural mechanisms of these relations. In study 1, we examined sympathetic neural and blood pressure responses to experimentally-induced sleep deprivation in men and women. We further investigated the influence of sleep deprivation on cardiovascular reactivity to acute stress. In study 2, we examined the neural and cardiovascular function throughout the ovarian cycle in sleep deprived women. Twenty-eight young healthy subjects (14men and 14 women) were tested twice in study 1, once after normal sleep (NS) and once after 24-h total sleep deprivation (TSD). We measured the blood pressure, heart rate (HR), muscle sympathetic nerve activity (MSNA) and forearm blood flow (FBF) during 10min baseline, 5min of mental stress (MS) and 2 min cold pressor test (CPT). We demonstrated that TSD increased resting arterial blood pressure to a similar extent in both men and women, but MSNA decreased only in men following TSD. This MSNA response was associated with altered baroreflex function in women and divergent testosterone responses to TSD between men and women. Regarding TSD and cardiovascular reactivity, TSD elicited augmented HR reactivity and delayed recovery during both MS and CPT in men and women, and responses between sexes were not statistically different. Fourteen young healthy women participated in study 2. Subjects were tested twice, once during their early follicular (EF) phase after TSD, once during their mid-luteal (ML) phase after TSD. Blood pressure, HR, MSNA, and FBF were recorded during 10min baseline, 5 min MS, and 2 min CPT. We observed an augmented resting supine blood pressure during EF compared to ML in sleep deprived women. In contrast, resting MSNA, as well as cardiovascular responses to stressors, were similar between EF and ML after TSD. In conclusion, we observed sex differences in MSNA responses to TSD that demonstrate reductions of MSNA in men, but not women. TSD elicited augmented HR reactivity and delayed HR recovery to acute stressors similarly in men and women. We also reported an augmented supine blood pressure during EF compared to ML in sleep deprived women. These novel findings provide new and valuable mechanistic insight regarding the complex and poorly understood relations among sleep deprivation, sex, stress, and risk of cardiovascular disease.